
Isomeric Forms of Divalent Heavier Group 14 Element Hydrides:
Characterization of Ar ′(H)GeGe(H)Ar ′ and Ar ′(H)2GeGeAr ′‚PMe3

(Ar ′ ) C6H3-2,6-Dipp 2; Dipp ) C6H3-2,6-Pri
2)

Anne F. Richards, Andrew D. Phillips, Marilyn M. Olmstead, and Philip P. Power*

Department of Chemistry, UniVersity of California, DaVis, One Shields AVenue, DaVis, California, 95616

Received December 16, 2002 ; E-mail: pppower@ucdavis.edu

Tetravalent hydrides of the heavier group 14 elements have been
studied extensively because of their widespread uses in organic
synthesis,1 and as precursors for high-purity elements or related
alloys, which are of importance in electronics.2 In contrast, divalent
hydrides of these elements remained unknown until 2000 when it
was shown that large co-ligands such as the aryl Ar* (C6H3-2,6-
Trip2; Trip ) C6H2-2,4,6-Pri3) or the â-diketiminate ligand
HC(CMeNDipp)2 (i.e., Dipp2N∧N, Dipp ) C6H3-2,6-Pri2) could
stabilize divalent hydrides as exemplified by the formulas
{Ar*Sn(µ-H)}2

3 and Dipp2N∧NGeH.4 The Sn compound had a
hydrogen-bridged dimeric structure,3 whereas the Ge derivative was
a monomer in which the Ge was three-coordinate.3 In addition to
their possible synthetic applications the divalent hydrides are of
fundamental interest because theoretical studies on model species
have predicted that they exist in a number of isomeric forms
separated by relatively low energies. For example, a computational
study by Trinquier5 has shown that the simplest divalent hydrides,
i.e., MH2 (M ) Si through Pb) can exist as dimers that have several
different structures of various stabilities, which are represented by
I-IV .

The trans-pyramidalI was calculated to be the most stable for
Si and Ge, whereas the trans-bridgedIII is the most stable for Sn
and Pb. The mixed valence isomerII lies between these and is
also a minimum on the potential surfaces. Of the four isomers listed,
only a tin derivative ofIII has been isolated as a stable compound.3

We now report the isolation and characterization of a germanium
(II) hydride, Ar′(H)GeGe(H)Ar′ 1 (Ar′ ) C6H3-2,6-Dipp2), that
corresponds toI , and Ar′(H)2GeGeAr′(PMe3), corresponding to
base-stabilizedII , which were synthesized as in Scheme 1.

Initial work on the synthesis of1 followed a synthetic route
similar to that described for the divalent tin hydride.3 However, it

was found that use of DIBAL (di-isobutyl aluminum hydride), or
reducing agents such as LiAlH4, LiH, or NaH, gave, upon reaction
with Ar′GeCl, colorless solutions from which crystals of Ar′GeH3

were isolated. A milder reducing agent in the form of Li{BBus
3H},

(L-selectride), was therefore used. It was also anticipated that use
of a bulkier reductant would not allow coordination of the BBus

3

to the Ge center as in the case of the reduction of Dipp2N∧NGeCl
by NaBH4.4

Addition of 1 equiv of L-selectride to an orange Et2O solution
of Ar′GeCl6 at ca. -78 °C furnished a deep-red solution upon
warming to ambient temperature.7 Stirring was maintained for 6 h
whereupon the reaction mixture was concentrated, filtered, and
stored at ca. -5 °C for 12 h to yield orange crystals of1. Their
composition was established by X-ray crystallography8 and NMR
and IR spectroscopies.7 The structure of1 is illustrated in Figure
1. The molecule has crystallographic 2/m symmetry in which the
C-Ge-Ge-C array is incorporated in the mirror plane. It features
a trans-pyramidal, “dimetallene” core arrangement with a Ge-Ge
distance of 2.3723(11) Å. This distance lies in the upper half of
the currently known range for digermenes, probably as a result of
the steric effects of the Ar′ ligands.9 The presence of lone pair
character at Ge is indicated by an out-of-plane angle of 20.5°.
Spectroscopic studies corroborated the X-ray structure, and a
chemical shift at 3.48 ppm in the1H NMR spectrum was assigned
to Ge-H. This shift is comparable to the 4-6 ppm range in Ge(IV)
hydrides.10 The IR absorption for Ge-H was observed at 1785 cm-1

(cf 1726 cm-1 for Dipp2N∧NGeH),4 and is lower than those in
Ge(IV) hydrides, which are generally observed in the region of
1900-2000 cm-1.10 This may be due to a lower ionic component
in the Ge(II)-H bond which reduces its strength. The structure of
1, which is the only stable heavier group 14 dimetallene hydride

Scheme 1. Synthetic Routes to 1 and 2a

a Conditions: i) 1 equiv L-selectride in toluene,-78 °C, ii) 2.0 equiv
PMe3, extract with hexane.

Figure 1. Thermal ellipsoid (35%) drawing of1. Selected bond distances
(Å) and angles (deg): Ge(1)-Ge(1a)) 2.3723(11), Ge(1)-C(1)) 2.021(3),
C(1)-Ge(1)-Ge(1a)) 108.78(9), C(1)-Ge(1)-H(1) ) 119.07(3), H(1)-
Ge(1)-Ge(1a)) 127.07(5).
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derivative, may be contrasted with that of the bridged tin hydride
{Ar*Sn(µ-H)}2

3.
Use of L-selectride resulted in the formation of BBus

3 as an
involatile side product, which could complicate reactivity studies.
We attempted to avoid this through addition of PMe3 to form the
adduct Bus3B‚PMe3. To this end, a toluene solution of Ar′GeCl
was treated with 1 equiv of L-selectride at-78 °C.7 The orange
solution became reddish green immediately, with concomitant
precipitate formation. Following filtration, 2 equiv of neat PMe3

was added dropwise with constant stirring. Removal of the toluene
under vacuum and extraction with hexane permitted separation of
Bus

3B‚PMe3 as a white solid. The yellow supernatant liquid was
separated and stored at ca.-5 °C for 48 h to give2 as yellow
crystals in 14% yield. The structure8 (Figure 2) displayed a Ge-
Ge distance of 2.5304(7) Å, which is at the longer end of the Ge-
Ge single-bond range (cf. covalent radius of Ge) 1.22 Å). The
Ge hydrogens were located using a difference map and refined with
restrained lengths of 1.44(4) Å. The IR spectrum of2 had a Ge-H
absorption at 1905 cm-1, and the1H NMR spectrum displayed a
signal at 3.81 ppm due to Ge-H. A feature of2 is the presence of
Ge in two formal oxidation states: Ge(I) (divalent) and Ge(III)
(tetravalent). Prior examples are limited to a few compounds,11,12

e.g. (2,6-Mes2H3C6)GeGe(But)3 (Mes ) C6H2-2,4,6-Me3) which
has a similar Ge-Ge distance of 2.5439(7) Å.12 The Ge(1)-C(1)
bond to divalent Ge (2.070(3) Å) is longer than that of tetravalent
Ge(2)-C(34), 1.991(3) Å. This may be due to the smaller ionic
contribution to the Ge(1)-C(1) bond strength as a result of the
increased electron density at phosphine complexed Ge(1). Two
structurally characterized examples of phosphine adducts to Ge
exist,13,14 namely, GeCl2(PPh3) and GeI2(PPh3). They have an
average Ge-P distance of 2.51 Å, which is slightly longer than
the 2.4041(9) Å Ge(1)-P(1) distance in2. Future work will involve
exploration of the reactivity of1.
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Figure 2. Thermal ellipsoid (50%) drawing of2. Selected bond distances
(Å) and angles (deg): Ge(1)-Ge(2)) 2.5304(7), Ge(1)-C(1) ) 2.070(3),
Ge(2)-C(34)) 1.991(3), Ge(2)-H(1) ) 1.40(3), Ge(2)-H(2) ) 1.44(3),
Ge(1)-P(1)) 2.4041(9), C(1)-Ge(1)-P(1)) 110.34(7), Ge(2)-Ge(1)-
P(1) ) 88.98(3), Ge(2)-Ge(1)-C(1) ) 101.59(7).
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